

Welcome to the wgpu-py docs!

The wgpu library is a Python implementation of WebGPU.

Contents:

	Getting started
	Installation

	Dependencies

	System requirements

	About this API

	What’s new in this version?

	Guide
	A brief history of WebGPU

	Getting started with WebGPU

	Coordinate system

	Communicating array data

	Debugging

	Freezing apps with wgpu

	Examples

	Reference
	Utilities

	Enums

	Flags

	WGPU API

	WGPU classes

	GUI API

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Installation

pip install wgpu

Dependencies

	Python 3.7 or higher is required. Pypy is supported.

	The required wgpu-native library is distributed as part of the wgpu-py package.

	The only other dependency is cffi (installed automatically by pip).

System requirements

The system must be new enough to support Metal or Vulkan:

	Windows: fine on Windows 10, probably older Windows versions too when DX12 can be used.

	MacOS: version 10.13 High Sierra or higher.

	Linux: Vulkan must be available.

About this API

This library presents a Pythonic API for the WebGPU spec [https://gpuweb.github.io/gpuweb/]. It is an API to control graphics
hardware. Like OpenGL but modern, or like Vulkan but higher level.
GPU programming is a craft that requires knowledge of how GPU’s work.
See the guide for more info and links to resources.

What’s new in this version?

Since the API changes with each release, and we do not yet make things
backwards compatible. You may want to check the changelog when you
upgrade to a newer version of wgpu:

https://github.com/pygfx/wgpu-py/blob/main/CHANGELOG.md

Guide

Not a lot here yet. More will come over time.

A brief history of WebGPU

For years, OpenGL has been the only cross-platform API to talk to the GPU.
But over time OpenGL has grown into an inconsistent and complex API …

OpenGL is dying
— Dzmitry Malyshau at Fosdem 2020 [https://fosdem.org/2020/schedule/event/rust_webgpu/]

In recent years, modern API’s have emerged that solve many of OpenGL’s
problems. You may have heard of them: Vulkan, Metal, and DX12. These
API’s are much closer to the hardware, which makes the drivers more
consistent and reliable. Unfortunately, the huge amount of “knobs to
turn” also makes them quite hard to work with for developers.

Therefore, people are working on a higher level API, that wraps Vulkan/Metal/DX12,
using the same concepts, but is much easier to work with. This is the
WebGPU specification [https://gpuweb.github.io/gpuweb/]. This is what future devs
will be using to write GPU code for the browser. And for desktop and mobile.

As the WebGPU spec is being developed, a reference implementation is
also build. It’s written in Rust and powers the WebGPU implementation in Firefox.
This reference implementation, called wgpu [https://github.com/gfx-rs/wgpu],
also exposes a C-api (via wgpu-native [https://github.com/gfx-rs/wgpu-native]),
so that it can be wrapped in Python. And this is precisely what wgpu-py does.

So in short, wgpu-py is a Python wrapper of wgpu, which is an desktop
implementation of WebGPU, an API that wraps Vulkan, Metal and DX12,
which talk to the GPU hardware.

Getting started with WebGPU

For now, we’ll direct you to some related tutorials:

	https://sotrh.github.io/learn-wgpu/

	https://rust-tutorials.github.io/learn-wgpu/

Coordinate system

The Y-axis is up in normalized device coordinate (NDC): point(-1.0, -1.0)
in NDC is located at the bottom-left corner of NDC. In addition, x and
y in NDC should be between -1.0 and 1.0 inclusive, while z in NDC should
be between 0.0 and 1.0 inclusive. Vertices out of this range in NDC
will not introduce any errors, but they will be clipped.

Communicating array data

The wgpu-py library makes no assumptions about how you store your data.
In places where you provide data to the API, it can consume any data
that supports the buffer protocol, which includes bytes,
bytearray, memoryview, ctypes arrays, and numpy arrays.

In places where data is returned, the API returns a memoryview
object. These objects provide a quite versatile view on ndarray data:

One could, for instance read the content of a buffer
m = buffer.read_data()
Cast it to float32
m = m.cast("f")
Index it
m[0]
Show the content
print(m.tolist())

Chances are that you prefer Numpy. Converting the memoryview to a
numpy array (without copying the data) is easy:

array = np.frombuffer(m, np.float32)

Debugging

If the default wgpu-backend causes issues, or if you want to run on a
different backend for another reason, you can set the
WGPU_BACKEND_TYPE environment variable to “Vulkan”, “Metal”, “D3D12”,
“D3D11”, or “OpenGL”.

The log messages produced (by Rust) in wgpu-native are captured and
injected into Python’s “wgpu” logger. One can set the log level to
“INFO” or even “DEBUG” to get detailed logging information.

Many GPU objects can be given a string label. This label will be used
in Rust validation errors, and are also used in e.g. RenderDoc to
identify objects. Additionally, you can insert debug markers at the
render/compute pass object, which will then show up in RenderDoc.

Eventually, wgpu-native will fully validate API input. Until then, it
may be worthwhile to enable the Vulkan validation layers. To do so, run
a debug build of wgpu-native and make sure that the Lunar Vulkan SDK
is installed.

You can run your application via RenderDoc, which is able to capture a
frame, including all API calls, objects and the complete pipeline state,
and display all of that information within a nice UI.

You can use adapter.request_device_tracing() to provide a directory path
where a trace of all API calls will be written. This trace can then be used
to re-play your use-case elsewhere (it’s cross-platform).

Also see wgpu-core’s section on debugging:
https://github.com/gfx-rs/wgpu/wiki/Debugging-wgpu-Applications

Freezing apps with wgpu

Wgpu implements a hook for PyInstaller to help simplify the freezing process
(it e.g. ensures that the wgpu-native DLL is included). This hook requires
PyInstaller version 4+.

Examples

Some examples with wgpu-py can be found here:

	https://github.com/pygfx/wgpu-py/tree/main/examples

Note: The examples in the main branch of the repository may not match the pip installable version. Be sure to refer to the examples from the git tag that matches the version of wgpu you have installed.

Reference

	Utilities

	Enums

	Flags

	WGPU API
	How to read this API

	Selecting the backend

	Differences from WebGPU

	Alphabetic list of GPU classes

	Overview

	WGPU classes
	Adapter and device

	Buffers and textures

	Bind groups

	Shaders and pipelines

	Command buffers and encoders

	Other

	GUI API
	The canvas interface

	The WgpuCanvas base class

	Base offscreen class

	The auto GUI backend

	Support for Qt

	Support for wx

	Support for offscreen

	Support for GLFW

	Support for Jupyter lab and notebook

Utilities

The wgpu library provides a few utilities. Note that the functions below need to be explictly imported.

	
wgpu.utils.get_default_device()

	Get a wgpu device object. If this succeeds, it’s likely that
the WGPU lib is usable on this system. If not, this call will
probably exit (Rust panic). When called multiple times,
returns the same global device object (useful for e.g. unit tests).

	
wgpu.utils.compute_with_buffers(input_arrays, output_arrays, shader, n=None)

	Apply the given compute shader to the given input_arrays and return
output arrays. Both input and output arrays are represented on the GPU
using storage buffer objects.

	Parameters

	
	input_arrays (dict) – A dict mapping int bindings to arrays. The array
can be anything that supports the buffer protocol, including
bytes, memoryviews, ctypes arrays and numpy arrays. The
type and shape of the array does not need to match the type
with which the shader will interpret the buffer data (though
it probably makes your code easier to follow).

	output_arrays (dict) – A dict mapping int bindings to output shapes.
If the value is int, it represents the size (in bytes) of
the buffer. If the value is a tuple, its last element
specifies the format (see below), and the preceding elements
specify the shape. These are used to cast() the
memoryview object before it is returned. If the value is a
ctypes array type, the result will be cast to that instead
of a memoryview. Note that any buffer that is NOT in the
output arrays dict will be considered readonly in the shader.

	shader (str or bytes) – The shader as a string of WGSL code or SpirV bytes.

	n (int, tuple, optional) – The dispatch counts. Can be an int
or a 3-tuple of ints to specify (x, y, z). If not given or None,
the length of the first output array type is used.

	Returns

	A dict mapping int bindings to memoryviews.

	Return type

	output (dict)

The format characters to cast a memoryview are hard to remember, so
here’s a refresher:

	“b” and “B” are signed and unsiged 8-bit ints.

	“h” and “H” are signed and unsiged 16-bit ints.

	“i” and “I” are signed and unsiged 32-bit ints.

	“e” and “f” are 16-bit and 32-bit floats.

Enums

All wgpu enums. Also available in the root wgpu namespace.

	
wgpu.enums.AddressMode = 'clamp-to-edge', 'mirror-repeat', 'repeat'

	

	
wgpu.enums.BlendFactor = 'constant', 'dst', 'dst-alpha', 'one', 'one-minus-constant', 'one-minus-dst', 'one-minus-dst-alpha', 'one-minus-src', 'one-minus-src-alpha', 'src', 'src-alpha', 'src-alpha-saturated', 'zero'

	

	
wgpu.enums.BlendOperation = 'add', 'max', 'min', 'reverse-subtract', 'subtract'

	

	
wgpu.enums.BufferBindingType = 'read-only-storage', 'storage', 'uniform'

	

	
wgpu.enums.CanvasCompositingAlphaMode = 'opaque', 'premultiplied'

	

	
wgpu.enums.CompareFunction = 'always', 'equal', 'greater', 'greater-equal', 'less', 'less-equal', 'never', 'not-equal'

	

	
wgpu.enums.CompilationMessageType = 'error', 'info', 'warning'

	

	
wgpu.enums.ComputePassTimestampLocation = 'beginning', 'end'

	

	
wgpu.enums.CullMode = 'back', 'front', 'none'

	

	
wgpu.enums.DeviceLostReason = 'destroyed'

	

	
class wgpu.enums.Enum(name, **kwargs)

	

	
wgpu.enums.ErrorFilter = 'out-of-memory', 'validation'

	

	
wgpu.enums.FeatureName = 'depth24unorm-stencil8', 'depth32float-stencil8', 'depth-clip-control', 'indirect-first-instance', 'shader-f16', 'texture-compression-astc', 'texture-compression-bc', 'texture-compression-etc2', 'timestamp-query'

	

	
wgpu.enums.FilterMode = 'linear', 'nearest'

	

	
wgpu.enums.FrontFace = 'ccw', 'cw'

	

	
wgpu.enums.IndexFormat = 'uint16', 'uint32'

	

	
wgpu.enums.LoadOp = 'clear', 'load'

	

	
wgpu.enums.MipmapFilterMode = 'linear', 'nearest'

	

	
wgpu.enums.PowerPreference = 'high-performance', 'low-power'

	

	
wgpu.enums.PredefinedColorSpace = 'srgb'

	

	
wgpu.enums.PrimitiveTopology = 'line-list', 'line-strip', 'point-list', 'triangle-list', 'triangle-strip'

	

	
wgpu.enums.QueryType = 'occlusion', 'timestamp'

	

	
wgpu.enums.RenderPassTimestampLocation = 'beginning', 'end'

	

	
wgpu.enums.SamplerBindingType = 'comparison', 'filtering', 'non-filtering'

	

	
wgpu.enums.StencilOperation = 'decrement-clamp', 'decrement-wrap', 'increment-clamp', 'increment-wrap', 'invert', 'keep', 'replace', 'zero'

	

	
wgpu.enums.StorageTextureAccess = 'write-only'

	

	
wgpu.enums.StoreOp = 'discard', 'store'

	

	
wgpu.enums.TextureAspect = 'all', 'depth-only', 'stencil-only'

	

	
wgpu.enums.TextureDimension = '1d', '2d', '3d'

	

	
wgpu.enums.TextureFormat = 'astc-10x10-unorm', 'astc-10x10-unorm-srgb', 'astc-10x5-unorm', 'astc-10x5-unorm-srgb', 'astc-10x6-unorm', 'astc-10x6-unorm-srgb', 'astc-10x8-unorm', 'astc-10x8-unorm-srgb', 'astc-12x10-unorm', 'astc-12x10-unorm-srgb', 'astc-12x12-unorm', 'astc-12x12-unorm-srgb', 'astc-4x4-unorm', 'astc-4x4-unorm-srgb', 'astc-5x4-unorm', 'astc-5x4-unorm-srgb', 'astc-5x5-unorm', 'astc-5x5-unorm-srgb', 'astc-6x5-unorm', 'astc-6x5-unorm-srgb', 'astc-6x6-unorm', 'astc-6x6-unorm-srgb', 'astc-8x5-unorm', 'astc-8x5-unorm-srgb', 'astc-8x6-unorm', 'astc-8x6-unorm-srgb', 'astc-8x8-unorm', 'astc-8x8-unorm-srgb', 'bc1-rgba-unorm', 'bc1-rgba-unorm-srgb', 'bc2-rgba-unorm', 'bc2-rgba-unorm-srgb', 'bc3-rgba-unorm', 'bc3-rgba-unorm-srgb', 'bc4-r-snorm', 'bc4-r-unorm', 'bc5-rg-snorm', 'bc5-rg-unorm', 'bc6h-rgb-float', 'bc6h-rgb-ufloat', 'bc7-rgba-unorm', 'bc7-rgba-unorm-srgb', 'bgra8unorm', 'bgra8unorm-srgb', 'depth16unorm', 'depth24plus', 'depth24plus-stencil8', 'depth24unorm-stencil8', 'depth32float', 'depth32float-stencil8', 'eac-r11snorm', 'eac-r11unorm', 'eac-rg11snorm', 'eac-rg11unorm', 'etc2-rgb8a1unorm', 'etc2-rgb8a1unorm-srgb', 'etc2-rgb8unorm', 'etc2-rgb8unorm-srgb', 'etc2-rgba8unorm', 'etc2-rgba8unorm-srgb', 'r16float', 'r16sint', 'r16uint', 'r32float', 'r32sint', 'r32uint', 'r8sint', 'r8snorm', 'r8uint', 'r8unorm', 'rg11b10ufloat', 'rg16float', 'rg16sint', 'rg16uint', 'rg32float', 'rg32sint', 'rg32uint', 'rg8sint', 'rg8snorm', 'rg8uint', 'rg8unorm', 'rgb10a2unorm', 'rgb9e5ufloat', 'rgba16float', 'rgba16sint', 'rgba16uint', 'rgba32float', 'rgba32sint', 'rgba32uint', 'rgba8sint', 'rgba8snorm', 'rgba8uint', 'rgba8unorm', 'rgba8unorm-srgb', 'stencil8'

	

	
wgpu.enums.TextureSampleType = 'depth', 'float', 'sint', 'uint', 'unfilterable-float'

	

	
wgpu.enums.TextureViewDimension = 'cube', 'cube-array', '1d', '2d', '2d-array', '3d'

	

	
wgpu.enums.VertexFormat = 'float16x2', 'float16x4', 'float32', 'float32x2', 'float32x3', 'float32x4', 'sint16x2', 'sint16x4', 'sint32', 'sint32x2', 'sint32x3', 'sint32x4', 'sint8x2', 'sint8x4', 'snorm16x2', 'snorm16x4', 'snorm8x2', 'snorm8x4', 'uint16x2', 'uint16x4', 'uint32', 'uint32x2', 'uint32x3', 'uint32x4', 'uint8x2', 'uint8x4', 'unorm16x2', 'unorm16x4', 'unorm8x2', 'unorm8x4'

	

	
wgpu.enums.VertexStepMode = 'instance', 'vertex'

	

Flags

All wgpu flags. Also available in the root wgpu namespace.

	
wgpu.flags.BufferUsage = COPY_DST, COPY_SRC, INDEX, INDIRECT, MAP_READ, MAP_WRITE, QUERY_RESOLVE, STORAGE, UNIFORM, VERTEX

	

	
wgpu.flags.ColorWrite = ALL, ALPHA, BLUE, GREEN, RED

	

	
class wgpu.flags.Flags(name, **kwargs)

	

	
wgpu.flags.MapMode = READ, WRITE

	

	
wgpu.flags.ShaderStage = COMPUTE, FRAGMENT, VERTEX

	

	
wgpu.flags.TextureUsage = COPY_DST, COPY_SRC, RENDER_ATTACHMENT, STORAGE_BINDING, TEXTURE_BINDING

	

WGPU API

This document describes the wgpu API. It is basically a Pythonic version of the
WebGPU API [https://gpuweb.github.io/gpuweb/]. It exposes an API
for performing operations, such as rendering and computation, on a
Graphics Processing Unit.

The WebGPU API is still being developed and occasionally there are backwards
incompatible changes. Since we mostly follow the WebGPU API, there may be
backwards incompatible changes to wgpu-py too. This will be so until
the WebGPU API settles as a standard.

How to read this API

The classes in this API all have a name staring with “GPU”, this helps
discern them from flags and enums. These classes are never instantiated
directly; new objects are returned by certain methods.

Most methods in this API have no positional arguments; each argument
must be referenced by name. Some argument values must be a dict, these
can be thought of as “nested” arguments.

Many arguments (and dict fields) must be a
flags or enums.
Flags are integer bitmasks that can be orred together. Enum values are
strings in this API.

Some arguments have a default value. Most do not.

Selecting the backend

Before you can use this API, you have to select a backend. Eventually
there may be multiple backends, but at the moment
there is only one backend, which is based on the Rust libary
wgpu-native [https://github.com/gfx-rs/wgpu]. You select
the backend by importing it:

import wgpu.backends.rs

The wgpu-py package comes with the wgpu-native library. If you want
to use your own version of that library instead, set the WGPU_LIB_PATH
environment variable.

Differences from WebGPU

This API is derived from the WebGPU spec, but differs in a few ways.
For example, methods that in WebGPU accept a descriptor/struct/dict,
here accept the fields in that struct as keyword arguments.

	
wgpu.base.apidiff Differences of base API:

	
	Adds GPUAdapter.properties() - useful for desktop

	Adds GPUBuffer.map_read() - Alternative to mapping API

	Adds GPUBuffer.map_write() - Alternative to mapping API

	Adds GPUBuffer.size() - Too useful to not-have

	Adds GPUBuffer.usage() - Too useful to not-have

	Adds GPUCanvasContext.present() - Present method is exposed

	Adds GPUDevice.adapter() - Too useful to not-have

	Adds GPUDevice.create_buffer_with_data() - replaces WebGPU’s mapping API

	Adds GPUQueue.read_buffer() - replaces WebGPU’s mapping API

	Adds GPUQueue.read_texture() - For symmetry, and to help work around the bytes_per_row constraint

	Adds GPUTexture.dimension() - Too useful to not-have

	Adds GPUTexture.format() - Too useful to not-have

	Adds GPUTexture.mip_level_count() - Too useful to not-have

	Adds GPUTexture.sample_count() - Too useful to not-have

	Adds GPUTexture.size() - Too useful to not-have

	Adds GPUTexture.usage() - Too useful to not-have

	Adds GPUTextureView.size() - Too useful to not-have

	Adds GPUTextureView.texture() - Too useful to not-have

	Changes GPU.request_adapter() - arguments include a canvas object

	Changes GPU.request_adapter_async() - arguments include a canvas object

	Hides GPUBuffer.get_mapped_range()

	Hides GPUBuffer.map_async()

	Hides GPUBuffer.unmap()

	Hides GPUDevice.import_external_texture() - Specific to browsers.

	Hides GPUDevice.pop_error_scope()

	Hides GPUDevice.push_error_scope()

	Hides GPUQueue.copy_external_image_to_texture() - Specific to browsers.

Each backend may also implement minor differences (usually additions)
from the base API. For the rs backend check print(wgpu.backends.rs.apidiff.__doc__).

Alphabetic list of GPU classes

	GPU

	GPUAdapter

	GPUBindGroup

	GPUBindGroupLayout

	GPUBindingCommandsMixin

	GPUBuffer

	GPUCanvasContext

	GPUCommandBuffer

	GPUCommandEncoder

	GPUCommandsMixin

	GPUCompilationInfo

	GPUCompilationMessage

	GPUComputePassEncoder

	GPUComputePipeline

	GPUDebugCommandsMixin

	GPUDevice

	GPUDeviceLostInfo

	GPUExternalTexture

	GPUObjectBase

	GPUOutOfMemoryError

	GPUPipelineBase

	GPUPipelineLayout

	GPUQuerySet

	GPUQueue

	GPURenderBundle

	GPURenderBundleEncoder

	GPURenderCommandsMixin

	GPURenderPassEncoder

	GPURenderPipeline

	GPUSampler

	GPUShaderModule

	GPUTexture

	GPUTextureView

	GPUUncapturedErrorEvent

	GPUValidationError

Overview

Adapter, device and canvas

The GPU represents the root namespace that contains the entrypoint to request an adapter.

The GPUAdapter represents a hardware or software device, with specific
features, limits and properties. To actually start using that harware for computations or rendering, a GPUDevice object must be requisted from the adapter. This is a logical unit
to control your hardware (or software).
The device is the central object; most other GPU objects are created from it.
Also see the convenience function wgpu.utils.get_default_device().

A device is controlled with a specific backend API. By default one is selected automatically.
This can be overridden by setting the
WGPU_BACKEND_TYPE environment variable to “Vulkan”, “Metal”, “D3D12”, “D3D11”, or “OpenGL”.

The device and all objects created from it inherit from GPUObjectBase - they represent something on the GPU.

In most render use-cases you want the result to be presented to a canvas on the screen.
The GPUCanvasContext is the bridge between wgpu and the underlying GUI backend.

Buffers and textures

A GPUBuffer can be created from a device. It is used to hold data, that can
be uploaded using it’s API. From the shader’s point of view, the buffer can be accessed
as a typed array.

A GPUTexture is similar to a buffer, but has some image-specific features.
A texture can be 1D, 2D or 3D, can have multiple levels of detail (i.e. lod or mipmaps).
The texture itself represents the raw data, you can create one or more GPUTextureView objects
for it, that can be attached to a shader.

To let a shader sample from a texture, you also need a GPUSampler that
defines the filtering and sampling behavior beyond the edges.

WebGPU also defines the GPUExternalTexture, but this is not (yet?) used in wgpu-py.

Bind groups

Shaders need access to resources like buffers, texture views, and samplers.
The access to these resources occurs via so called bindings. There are
integer slots, which must be specifie both via the API, and in the shader.

Bindings are organized into GPUBindGroup s, which are essentially a list
of GPUBinding s.

Further, in wgpu you need to specify a GPUBindGroupLayout, providing
meta-information about the binding (type, texture dimension etc.).

Multiple bind groups layouts are collected in a GPUPipelineLayout,
which represents a complete layout description for a pipeline.

Shaders and pipelines

The wgpu API knows three kinds of shaders: compute, vertex and fragment.
Pipelines define how the shader is run, and with what resources.

Shaders are represented by a GPUShaderModule.

Compute shaders are combined with a pipelinelayout into a GPUComputePipeline.
Similarly, a vertex and (optional) fragment shader are combined with a pipelinelayout
into a GPURenderPipeline. Both of these inherit from GPUPipelineBase.

Command buffers and encoders

The actual rendering occurs by recording a series of commands and then submitting these commands.

The root object to generate commands with is the GPUCommandEncoder.
This class inherits from GPUCommandsMixin (because it generates commands),
and GPUDebugCommandsMixin (because it supports debugging).

Commands specific to compute and rendering are generated with a GPUComputePassEncoder and GPURenderPassEncoder respectively. You get these from the command encoder by the
corresponding begin_x_pass() method. These pass encoders inherit from
GPUBindingCommandsMixin (because you associate a pipeline)
and the latter also from GPURenderCommandsMixin.

When you’re done generating commands, you call finish() and get the list of
commands as an opaque object: the GPUCommandBuffer. You don’t really use this object
except for submitting it to the GPUQueue.

The command buffers are one-time use. The GPURenderBundle and GPURenderBundleEncoder can
be used to record commands to be used multiple times, but this is not yet
implememted in wgpu-py.

Error handling

Errors are caught and logged using the wgpu logger.

Todo: document the role of these classes:
GPUUncapturedErrorEvent
GPUValidationError
GPUOutOfMemoryError
GPUDeviceLostInfo

TODO

These classes are not supported and/or documented yet.
GPUCompilationMessage
GPUCompilationInfo
GPUQuerySet

WGPU classes

Adapter and device

	
class wgpu.GPU

	Class that represents the root namespace of the API.

	
wgpu.request_adapter(**parameters)

	Get a GPUAdapter, the object that represents an abstract wgpu
implementation, from which one can request a GPUDevice.

	Parameters

	
	canvas (WgpuCanvasInterface) – The canvas that the adapter should
be able to render to (to create a swap chain for, to be precise).
Can be None if you’re not rendering to screen (or if you’re
confident that the returned adapter will work just fine).

	powerPreference (PowerPreference) – “high-performance” or “low-power”

	
wgpu.request_adapter_async(**parameters)

	Async version of request_adapter().

	
class wgpu.GPUAdapter

	An adapter represents both an instance of a hardware accelerator
(e.g. GPU or CPU) and an implementation of WGPU on top of that
accelerator. If an adapter becomes unavailable, it becomes invalid.
Once invalid, it never becomes valid again.

	
features

	A tuple of supported feature names.

	
is_fallback_adapter

	Whether this adapter runs on software (rather than dedicated hardware).

	
limits

	A dict with the adapter limits.

	
name

	A human-readable name identifying the adapter.

	
properties

	A dict with the adapter properties (info on device, backend, etc.)

	
request_device(**parameters)

	Request a GPUDevice from the adapter.

	Parameters

	
	label (str) – A human readable label. Optional.

	required_features (list of str) – the features (extensions) that you need. Default [].

	required_limits (dict) – the various limits that you need. Default {}.

	default_queue (dict, optional) – Descriptor for the default queue.

	
request_device_async(**parameters)

	Async version of request_device().

	
class wgpu.GPUObjectBase

	The base class for all GPU objects (the device and all objects
belonging to a device).

	
label

	A human-readable name identifying the GPU object.

	
class wgpu.GPUDevice

	Subclass of GPUObjectBase

A device is the logical instantiation of an adapter, through which
internal objects are created. It can be shared across threads.
A device is the exclusive owner of all internal objects created
from it: when the device is lost, all objects created from it become
invalid.

Create a device using GPUAdapter.request_device() or
GPUAdapter.request_device_async().

	
adapter

	The adapter object corresponding to this device.

	
create_bind_group(**parameters)

	Create a GPUBindGroup object, which can be used in
pass.set_bind_group()
to attach a group of resources.

	Parameters

	
	label (str) – A human readable label. Optional.

	layout (GPUBindGroupLayout) – The layout (abstract representation)
for this bind group.

	entries (list of dict) – A list of dicts, see below.

Example entry dicts:

For a sampler
{
 "binding" : 0, # slot
 "resource": a_sampler,
}
For a texture view
{
 "binding" : 0, # slot
 "resource": a_texture_view,
}
For a buffer
{
 "binding" : 0, # slot
 "resource": {
 "buffer": a_buffer,
 "offset": 0,
 "size": 812,
 }
}

	
create_bind_group_layout(**parameters)

	Create a GPUBindGroupLayout object. One or more
such objects are passed to create_pipeline_layout() to
specify the (abstract) pipeline layout for resources. See the
docs on bind groups for details.

	Parameters

	
	label (str) – A human readable label. Optional.

	entries (list of dict) – A list of layout entry dicts.

Example entry dict:

Buffer
{
 "binding": 0,
 "visibility": wgpu.ShaderStage.COMPUTE,
 "buffer": {
 "type": wgpu.BufferBindingType.storage_buffer,
 "has_dynamic_offset": False, # optional
 "min_binding_size": 0 # optional
 }
},
Sampler
{
 "binding": 1,
 "visibility": wgpu.ShaderStage.COMPUTE,
 "sampler": {
 "type": wgpu.SamplerBindingType.filtering,
 }
},
Sampled texture
{
 "binding": 2,
 "visibility": wgpu.ShaderStage.FRAGMENT,
 "texture": {
 "sample_type": wgpu.TextureSampleType.float, # optional
 "view_dimension": wgpu.TextureViewDimension.d2, # optional
 "multisampled": False, # optional
 }
},
Storage texture
{
 "binding": 3,
 "visibility": wgpu.ShaderStage.FRAGMENT,
 "storage_texture": {
 "access": wgpu.StorageTextureAccess.read_only,
 "format": wgpu.TextureFormat.r32float,
 "view_dimension": wgpu.TextureViewDimension.d2,
 }
},

About has_dynamic_offset: For uniform-buffer, storage-buffer, and
readonly-storage-buffer bindings, it indicates whether the binding has a
dynamic offset. One offset must be passed to set_bind_group for each
dynamic binding in increasing order of binding number.

	
create_buffer(**parameters)

	Create a GPUBuffer object.

	Parameters

	
	label (str) – A human readable label. Optional.

	size (int) – The size of the buffer in bytes.

	usage (BufferUsageFlags) – The ways in which this buffer will be used.

	mapped_at_creation (bool) – Must be False, use create_buffer_with_data() instead.

	
create_buffer_with_data(**parameters)

	Create a GPUBuffer object initialized with the given data.

	Parameters

	
	label (str) – A human readable label. Optional.

	data – Any object supporting the Python buffer protocol (this
includes bytes, bytearray, ctypes arrays, numpy arrays, etc.).

	usage (BufferUsageFlags) – The ways in which this buffer will be used.

Also see GPUQueue.write_buffer() and GPUQueue.read_buffer().

	
create_command_encoder(**parameters)

	Create a GPUCommandEncoder object. A command
encoder is used to record commands, which can then be submitted
at once to the GPU.

	Parameters

	label (str) – A human readable label. Optional.

	
create_compute_pipeline(**parameters)

	Create a GPUComputePipeline object.

	Parameters

	
	label (str) – A human readable label. Optional.

	layout (GPUPipelineLayout) – object created with create_pipeline_layout().

	compute (dict) – E.g. {"module": shader_module, entry_point="main"}.

	
create_compute_pipeline_async(**parameters)

	Async version of create_compute_pipeline().

	
create_pipeline_layout(**parameters)

	Create a GPUPipelineLayout object, which can be
used in create_render_pipeline() or create_compute_pipeline().

	Parameters

	
	label (str) – A human readable label. Optional.

	bind_group_layouts (list) – A list of GPUBindGroupLayout objects.

	
create_query_set(**parameters)

	Create a GPUQuerySet object.

	
create_render_bundle_encoder(**parameters)

	Create a GPURenderBundle object.

TODO: not yet available in wgpu-native

	
create_render_pipeline(**parameters)

	Create a GPURenderPipeline object.

	Parameters

	
	label (str) – A human readable label. Optional.

	layout (GPUPipelineLayout) – A layout created with create_pipeline_layout().

	vertex (VertexState) – Describes the vertex shader entry point of the pipeline and its input buffer layouts.

	primitive (PrimitiveState) – Describes the the primitive-related properties
of the pipeline. If strip_index_format is present (which means the
primitive topology is a strip), and the drawCall is indexed, the
vertex index list is split into sub-lists using the maximum value of this
index format as a separator. Example: a list with values
[1, 2, 65535, 4, 5, 6] of type “uint16” will be split in sub-lists
[1, 2] and [4, 5, 6].

	depth_stencil (DepthStencilState) – Describes the optional depth-stencil properties, including the testing, operations, and bias. Optional.

	multisample (MultisampleState) – Describes the multi-sampling properties of the pipeline.

	fragment (FragmentState) – Describes the fragment shader
entry point of the pipeline and its output colors. If it’s
None, the No Color Output mode is enabled: the pipeline
does not produce any color attachment outputs. It still
performs rasterization and produces depth values based on
the vertex position output. The depth testing and stencil
operations can still be used.

In the example dicts below, the values that are marked as optional,
the shown value is the default.

Example vertex (VertexState) dict:

{
 "module": shader_module,
 "entry_point": "main",
 "buffers": [
 {
 "array_stride": 8,
 "step_mode": wgpu.VertexStepMode.vertex, # optional
 "attributes": [
 {
 "format": wgpu.VertexFormat.float2,
 "offset": 0,
 "shader_location": 0,
 },
 ...
],
 },
 ...
]
}

Example primitive (GPUPrimitiveState) dict:

{
 "topology": wgpu.PrimitiveTopology.triangle_list,
 "strip_index_format": wgpu.IndexFormat.uint32, # see note
 "front_face": wgpu.FrontFace.ccw, # optional
 "cull_mode": wgpu.CullMode.none, # optional
}

Example depth_stencil (GPUDepthStencilState) dict:

{
 "format": wgpu.TextureFormat.depth24plus_stencil8,
 "depth_write_enabled": False, # optional
 "depth_compare": wgpu.CompareFunction.always, # optional
 "stencil_front": { # optional
 "compare": wgpu.CompareFunction.equal,
 "fail_op": wgpu.StencilOperation.keep,
 "depth_fail_op": wgpu.StencilOperation.keep,
 "pass_op": wgpu.StencilOperation.keep,
 },
 "stencil_back": { # optional
 "compare": wgpu.CompareFunction.equal,
 "fail_op": wgpu.StencilOperation.keep,
 "depth_fail_op": wgpu.StencilOperation.keep,
 "pass_op": wgpu.StencilOperation.keep,
 },
 "stencil_read_mask": 0xFFFFFFFF, # optional
 "stencil_write_mask": 0xFFFFFFFF, # optional
 "depth_bias": 0, # optional
 "depth_bias_slope_scale": 0.0, # optional
 "depth_bias_clamp": 0.0, # optional
}

Example multisample (MultisampleState) dict:

{
 "count": 1, # optional
 "mask": 0xFFFFFFFF, # optional
 "alpha_to_coverage_enabled": False # optional
}

Example fragment (FragmentState) dict. The blend parameter can be None
to disable blending (not all texture formats support blending).

{
 "module": shader_module,
 "entry_point": "main",
 "targets": [
 {
 "format": wgpu.TextureFormat.bgra8unorm_srgb,
 "blend": {
 "color": (
 wgpu.BlendFactor.One,
 wgpu.BlendFactor.zero,
 gpu.BlendOperation.add,
),
 "alpha": (
 wgpu.BlendFactor.One,
 wgpu.BlendFactor.zero,
 wgpu.BlendOperation.add,
),
 }
 "write_mask": wgpu.ColorWrite.ALL # optional
 },
 ...
]
}

	
create_render_pipeline_async(**parameters)

	Async version of create_render_pipeline().

	
create_sampler(**parameters)

	Create a GPUSampler object. Samplers specify how a texture is sampled.

	Parameters

	
	label (str) – A human readable label. Optional.

	address_mode_u (AddressMode) – What happens when sampling beyond the x edge.
Default “clamp-to-edge”.

	address_mode_v (AddressMode) – What happens when sampling beyond the y edge.
Default “clamp-to-edge”.

	address_mode_w (AddressMode) – What happens when sampling beyond the z edge.
Default “clamp-to-edge”.

	mag_filter (FilterMode) – Interpolation when zoomed in. Default ‘nearest’.

	min_filter (FilterMode) – Interpolation when zoomed out. Default ‘nearest’.

	mipmap_filter – (MipmapFilterMode): Interpolation between mip levels. Default ‘nearest’.

	lod_min_clamp (float) – The minimum level of detail. Default 0.

	lod_max_clamp (float) – The maxium level of detail. Default 32.

	compare (CompareFunction) – The sample compare operation for depth textures.
Only specify this for depth textures. Default None.

	max_anisotropy (int) – The maximum anisotropy value clamp used by the sample,
betweet 1 and 16, default 1.

	
create_shader_module(**parameters)

	Create a GPUShaderModule object from shader source.

	Parameters

	
	label (str) – A human readable label. Optional.

	code (str | bytes) – The shader code, as WGSL text or binary SpirV
(or an object implementing to_spirv() or to_bytes()).

	hints – unused.

	
create_texture(**parameters)

	Create a GPUTexture object.

	Parameters

	
	label (str) – A human readable label. Optional.

	size (tuple or dict) – The texture size as a 3-tuple or a
dict (width, height, depth_or_array_layers).

	mip_level_count (int) – The number of mip leveles. Default 1.

	sample_count (int) – The number of samples. Default 1.

	dimension (TextureDimension) – The dimensionality of the texture. Default 2d.

	format (TextureFormat) – What channels it stores and how.

	usage (TextureUsageFlags) – The ways in which the texture will be used.

	view_formats (optional) – A list of formats that views are allowed to have
in addition to the texture’s own view. Using these formats may have
a performance penalty.

See https://gpuweb.github.io/gpuweb/#texture-format-caps for a
list of available texture formats. Note that less formats are
available for storage usage.

	
destroy()

	Destroy this device.

	
features

	A tuple of strings representing the features (i.e. extensions) with
which this device was created.

	
limits

	A dict exposing the limits with which this device was created.

	
lost

	Provides information about why the device is lost.

	
onuncapturederror

	Method called when an error is capured?

	
queue

	The default GPUQueue for this device.

Buffers and textures

	
class wgpu.GPUBuffer

	Subclass of GPUObjectBase

A GPUBuffer represents a block of memory that can be used in GPU
operations. Data is stored in linear layout, meaning that each byte
of the allocation can be addressed by its offset from the start of
the buffer, subject to alignment restrictions depending on the
operation.

Create a buffer using GPUDevice.create_buffer(),
GPUDevice.create_buffer_mapped() or GPUDevice.create_buffer_mapped_async().

One can sync data in a buffer by mapping it (or by creating a mapped
buffer) and then setting/getting the values in the mapped memoryview.
Alternatively, one can tell the GPU (via the command encoder) to
copy data between buffers and textures.

	
destroy()

	An application that no longer requires a buffer can choose
to destroy it. Note that this is automatically called when the
Python object is cleaned up by the garbadge collector.

	
map_read()

	Map the buffer and read the data from it, then unmap.
Return a memoryview object. Requires the buffer usage to include MAP_READ.

See queue.read_buffer() for a simpler alternative.

	
map_write(data)

	Map the buffer and write the data to it, then unmap.
Return a memoryview object. Requires the buffer usage to include MAP_WRITE.

See queue.write_buffer() for a simpler alternative.

	
size

	The length of the GPUBuffer allocation in bytes.

	
usage

	The allowed usages (int bitmap) for this GPUBuffer, specifying
e.g. whether the buffer may be used as a vertex buffer, uniform buffer,
target or source for copying data, etc.

	
class wgpu.GPUTexture

	Subclass of GPUObjectBase

A texture represents a 1D, 2D or 3D color image object. It also can have mipmaps
(different levels of varying detail), and arrays. The texture represents
the “raw” data. A GPUTextureView is used to define how the texture data
should be interpreted.

Create a texture using GPUDevice.create_texture().

	
create_view(**parameters)

	Create a GPUTextureView object.

If no aguments are given, a default view is given, with the
same format and dimension as the texture.

	Parameters

	
	label (str) – A human readable label. Optional.

	format (TextureFormat) – What channels it stores and how.

	dimension (TextureViewDimension) – The dimensionality of the texture view.

	aspect (TextureAspect) – Whether this view is used for depth, stencil, or all.
Default all.

	base_mip_level (int) – The starting mip level. Default 0.

	mip_level_count (int) – The number of mip levels. Default None.

	base_array_layer (int) – The starting array layer. Default 0.

	array_layer_count (int) – The number of array layers. Default None.

	
destroy()

	An application that no longer requires a texture can choose
to destroy it. Note that this is automatically called when the
Python object is cleaned up by the garbadge collector.

	
dimension

	The dimension of the texture.

	
format

	The format of the texture.

	
mip_level_count

	The total number of the mipmap levels of the texture.

	
sample_count

	The number of samples in each texel of the texture.

	
size

	The size of the texture in mipmap level 0, as a 3-tuple of ints.

	
usage

	The allowed usages for this texture.

	
class wgpu.GPUTextureView

	Subclass of GPUObjectBase

A texture view represents a way to represent a GPUTexture.

Create a texture view using GPUTexture.create_view().

	
size

	The texture size (as a 3-tuple).

	
texture

	The texture object to which this is a view.

	
class wgpu.GPUSampler

	Subclass of GPUObjectBase

A sampler specifies how a texture (view) must be sampled by the shader,
in terms of subsampling, sampling between mip levels, and sampling out
of the image boundaries.

Create a sampler using GPUDevice.create_sampler().

Bind groups

	
class wgpu.GPUBindGroupLayout

	Subclass of GPUObjectBase

A bind group layout defines the interface between a set of
resources bound in a GPUBindGroup and their accessibility in shader
stages.

Create a bind group layout using GPUDevice.create_bind_group_layout().

	
class wgpu.GPUBindGroup

	Subclass of GPUObjectBase

A bind group represents a group of bindings, the shader slot,
and a resource (sampler, texture-view, buffer).

Create a bind group using GPUDevice.create_bind_group().

	
class wgpu.GPUPipelineLayout

	Subclass of GPUObjectBase

A pipeline layout describes the layout of a pipeline, as a list
of GPUBindGroupLayout objects.

Create a pipeline layout using GPUDevice.create_pipeline_layout().

Shaders and pipelines

	
class wgpu.GPUShaderModule

	Subclass of GPUObjectBase

A shader module represents a programmable shader.

Create a shader module using GPUDevice.create_shader_module().

	
compilation_info()

	Get shader compilation info. Always returns empty string at the moment.

	
compilation_info_async()

	Async version of compilation_info()

	
class wgpu.GPUPipelineBase

	A mixin class for render and compute pipelines.

	
get_bind_group_layout(index)

	Get the bind group layout at the given index.

	
class wgpu.GPUComputePipeline

	Subclass of GPUPipelineBase, GPUObjectBase

A compute pipeline represents a single pipeline for computations (no rendering).

Create a compute pipeline using GPUDevice.create_compute_pipeline().

	
class wgpu.GPURenderPipeline

	Subclass of GPUPipelineBase, GPUObjectBase

A render pipeline represents a single pipeline to draw something
using a vertex and a fragment shader. The render target can come
from a window on the screen or from an in-memory texture (off-screen
rendering).

Create a render pipeline using GPUDevice.create_render_pipeline().

Command buffers and encoders

	
class wgpu.GPUCommandBuffer

	Subclass of GPUObjectBase

A command buffer stores a series of commands, generated by a
GPUCommandEncoder, to be submitted to a GPUQueue.

Create a command buffer using GPUCommandEncoder.finish().

Command buffers are single use, you must only submit them once and
submitting them destroys them. Use render bundles to re-use commands.

	
class wgpu.GPUCommandsMixin

	Mixin for classes that encode commands.

	
class wgpu.GPUBindingCommandsMixin

	Mixin for classes that defines bindings.

	
set_bind_group(index, bind_group, dynamic_offsets_data, dynamic_offsets_data_start, dynamic_offsets_data_length)

	Associate the given bind group (i.e. group or resources) with the
given slot/index.

	Parameters

	
	index (int) – The slot to bind at.

	bind_group (GPUBindGroup) – The bind group to bind.

	dynamic_offsets_data (list of int) – A list of offsets (one for each bind group).

	dynamic_offsets_data_start (int) – Not used.

	dynamic_offsets_data_length (int) – Not used.

	
class wgpu.GPUDebugCommandsMixin

	Mixin for classes that support debug groups and markers.

	
insert_debug_marker(marker_label)

	Insert the given message into the debug message queue.

	
pop_debug_group()

	Pop the active debug group.

	
push_debug_group(group_label)

	Push a named debug group into the command stream.

	
class wgpu.GPURenderCommandsMixin

	Mixin for classes that provide rendering commands.

	
draw(vertex_count, instance_count=1, first_vertex=0, first_instance=0)

	Run the render pipeline without an index buffer.

	Parameters

	
	vertex_count (int) – The number of vertices to draw.

	instance_count (int) – The number of instances to draw. Default 1.

	first_vertex (int) – The vertex offset. Default 0.

	first_instance (int) – The instance offset. Default 0.

	
draw_indexed(index_count, instance_count=1, first_index=0, base_vertex=0, first_instance=0)

	Run the render pipeline using an index buffer.

	Parameters

	
	index_count (int) – The number of indices to draw.

	instance_count (int) – The number of instances to draw. Default 1.

	first_index (int) – The index offset. Default 0.

	base_vertex (int) – A number added to each index in the index buffer. Default 0.

	first_instance (int) – The instance offset. Default 0.

	
draw_indexed_indirect(indirect_buffer, indirect_offset)

	Like draw_indexed(), but the function arguments are in a buffer.

	Parameters

	
	indirect_buffer (GPUBuffer) – The buffer that contains the arguments.

	indirect_offset (int) – The byte offset at which the arguments are.

	
draw_indirect(indirect_buffer, indirect_offset)

	Like draw(), but the function arguments are in a buffer.

	Parameters

	
	indirect_buffer (GPUBuffer) – The buffer that contains the arguments.

	indirect_offset (int) – The byte offset at which the arguments are.

	
set_index_buffer(buffer, index_format, offset=0, size=None)

	Set the index buffer for this render pass.

	Parameters

	
	buffer (GPUBuffer) – The buffer that contains the indices.

	index_format (GPUIndexFormat) – The format of the index data
contained in buffer. If strip_index_format is given in the
call to create_render_pipeline(), it must match.

	offset (int) – The byte offset in the buffer. Default 0.

	size (int) – The number of bytes to use. If zero, the remaining size
(after offset) of the buffer is used. Default 0.

	
set_pipeline(pipeline)

	Set the pipeline for this render pass.

	Parameters

	pipeline (GPURenderPipeline) – The pipeline to use.

	
set_vertex_buffer(slot, buffer, offset=0, size=None)

	Associate a vertex buffer with a bind slot.

	Parameters

	
	slot (int) – The binding slot for the vertex buffer.

	buffer (GPUBuffer) – The buffer that contains the vertex data.

	offset (int) – The byte offset in the buffer. Default 0.

	size (int) – The number of bytes to use. If zero, the remaining size
(after offset) of the buffer is used. Default 0.

	
class wgpu.GPUCommandEncoder

	Subclass of GPUCommandsMixin, GPUDebugCommandsMixin, GPUObjectBase

A command encoder is used to record a series of commands. When done,
call finish() to obtain a GPUCommandBuffer object.

Create a command encoder using GPUDevice.create_command_encoder().

	
begin_compute_pass(**parameters)

	Record the beginning of a compute pass. Returns a
GPUComputePassEncoder object.

	Parameters

	
	label (str) – A human readable label. Optional.

	timestamp_writes – unused

	
begin_render_pass(**parameters)

	Record the beginning of a render pass. Returns a
GPURenderPassEncoder object.

	Parameters

	
	label (str) – A human readable label. Optional.

	color_attachments (list of dict) – List of color attachment dicts. See below.

	depth_stencil_attachment (dict) – A depth stencil attachment dict. See below. Default None.

	occlusion_query_set – Default None. TODO NOT IMPLEMENTED in wgpu-native.

	timestamp_writes – unused

Example color attachment:

{
 "view": texture_view,
 "resolve_target": None, # optional
 "load_value": (0, 0, 0, 0), # LoadOp.load or a color
 "store_op": wgpu.StoreOp.store, # optional
}

Example depth stencil attachment:

{
 "view": texture_view,
 "depth_load_value": 0.0,
 "depth_store_op": wgpu.StoreOp.store,
 "stencil_load_value": wgpu.LoadOp.load,
 "stencil_store_op": wgpu.StoreOp.store,
}

	
clear_buffer(buffer, offset=0, size=None)

	Set (part of) the given buffer to zeros.

	
copy_buffer_to_buffer(source, source_offset, destination, destination_offset, size)

	Copy the contents of a buffer to another buffer.

	Parameters

	
	source (GPUBuffer) – The source buffer.

	source_offset (int) – The byte offset (a multiple of 4).

	destination (GPUBuffer) – The target buffer.

	destination_offset (int) – The byte offset in the destination buffer (a multiple of 4).

	size (int) – The number of bytes to copy (a multiple of 4).

	
copy_buffer_to_texture(source, destination, copy_size)

	Copy the contents of a buffer to a texture (view).

	Parameters

	
	source (GPUBuffer) – A dict with fields: buffer, offset, bytes_per_row, rows_per_image.

	destination (GPUTexture) – A dict with fields: texture, mip_level, origin.

	copy_size (int) – The number of bytes to copy.

Note that the bytes_per_row must be a multiple of 256.

	
copy_texture_to_buffer(source, destination, copy_size)

	Copy the contents of a texture (view) to a buffer.

	Parameters

	
	source (GPUTexture) – A dict with fields: texture, mip_level, origin.

	destination (GPUBuffer) – A dict with fields: buffer, offset, bytes_per_row, rows_per_image.

	copy_size (int) – The number of bytes to copy.

Note that the bytes_per_row must be a multiple of 256.

	
copy_texture_to_texture(source, destination, copy_size)

	Copy the contents of a texture (view) to another texture (view).

	Parameters

	
	source (GPUTexture) – A dict with fields: texture, mip_level, origin.

	destination (GPUTexture) – A dict with fields: texture, mip_level, origin.

	copy_size (int) – The number of bytes to copy.

	
finish(**parameters)

	Finish recording. Returns a GPUCommandBuffer to
submit to a GPUQueue.

	Parameters

	label (str) – A human readable label. Optional.

	
resolve_query_set(query_set, first_query, query_count, destination, destination_offset)

	TODO

	
write_timestamp(query_set, query_index)

	TODO

	
class wgpu.GPUComputePassEncoder

	Subclass of GPUCommandsMixin, GPUDebugCommandsMixin, GPUBindingCommandsMixin, GPUObjectBase

A compute-pass encoder records commands related to a compute pass.

Create a compute pass encoder using GPUCommandEncoder.begin_compute_pass().

	
dispatch_workgroups(workgroup_count_x, workgroup_count_y=1, workgroup_count_z=1)

	Run the compute shader.

	Parameters

	
	x (int) – The number of cycles in index x.

	y (int) – The number of cycles in index y. Default 1.

	z (int) – The number of cycles in index z. Default 1.

	
dispatch_workgroups_indirect(indirect_buffer, indirect_offset)

	Like dispatch_workgroups(), but the function arguments are in a buffer.

	Parameters

	
	indirect_buffer (GPUBuffer) – The buffer that contains the arguments.

	indirect_offset (int) – The byte offset at which the arguments are.

	
end()

	Record the end of the compute pass.

	
set_pipeline(pipeline)

	Set the pipeline for this compute pass.

	Parameters

	pipeline (GPUComputePipeline) – The pipeline to use.

	
class wgpu.GPURenderPassEncoder

	Subclass of GPUCommandsMixin, GPUDebugCommandsMixin, GPUBindingCommandsMixin, GPURenderCommandsMixin, GPUObjectBase

A render-pass encoder records commands related to a render pass.

Create a render pass encoder using GPUCommandEncoder.begin_render_pass().

	
begin_occlusion_query(query_index)

	TODO

	
end()

	Record the end of the render pass.

	
end_occlusion_query()

	TODO

	
execute_bundles(bundles)

	TODO: not yet available in wgpu-native

	
set_blend_constant(color)

	Set the blend color for the render pass.

	Parameters

	color (tuple or dict) – A color with fields (r, g, b, a).

	
set_scissor_rect(x, y, width, height)

	Set the scissor rectangle for this render pass. The scene
is rendered as usual, but is only applied to this sub-rectangle.

	Parameters

	
	x (int) – Horizontal coordinate.

	y (int) – Vertical coordinate.

	width (int) – Horizontal size.

	height (int) – Vertical size.

	
set_stencil_reference(reference)

	Set the reference stencil value for this render pass.

	Parameters

	reference (int) – The reference value.

	
set_viewport(x, y, width, height, min_depth, max_depth)

	Set the viewport for this render pass. The whole scene is rendered
to this sub-rectangle.

	Parameters

	
	x (int) – Horizontal coordinate.

	y (int) – Vertical coordinate.

	width (int) – Horizontal size.

	height (int) – Vertical size.

	min_depth (int) – Clipping in depth.

	max_depth (int) – Clipping in depth.

	
class wgpu.GPURenderBundle

	Subclass of GPUObjectBase

TODO: not yet available in wgpu-native

	
class wgpu.GPURenderBundleEncoder

	Subclass of GPUCommandsMixin, GPUDebugCommandsMixin, GPUBindingCommandsMixin, GPURenderCommandsMixin, GPUObjectBase

TODO: not yet available in wgpu-native

	
finish(**parameters)

	Finish recording and return a GPURenderBundle.

	Parameters

	label (str) – A human readable label. Optional.

Other

	
class wgpu.GPUCanvasContext

	A context object associated with a canvas, to present what has been drawn.

	
canvas

	The associated canvas object.

	
configure(**parameters)

	Configures the presentation context for the associated canvas.
Destroys any textures produced with a previous configuration.

	Parameters

	
	device (WgpuDevice) – The GPU device object.

	format (TextureFormat) – The texture format, e.g. “bgra8unorm-srgb”.
Default uses the preferred_format.

	usage (TextureUsage) – Default TextureUsage.OUTPUT_ATTACHMENT.

	color_space (PredefinedColorSpace) – Default “srgb”.

	compositing_alpha_mode (CanvasCompositingAlphaMode) – Default opaque.

	size – The 3D size of the texture to draw to. Default use canvas’ physical size.

	
get_current_texture()

	Get the GPUTexture that will be composited to the canvas
by the context next.

NOTE: for the time being, this could return a GPUTextureView instead.

	
get_preferred_format(adapter)

	Get the preferred swap chain format.

	
present()

	Present what has been drawn to the current texture, by compositing it
to the canvas. Note that a canvas based on WgpuCanvasBase will call this
method automatically at the end of each draw event.

	
unconfigure()

	Removes the presentation context configuration.
Destroys any textures produced while configured.

	
class wgpu.GPUQueue

	Subclass of GPUObjectBase

A queue can be used to submit command buffers to.

You can obtain a queue object via the GPUDevice.default_queue property.

	
on_submitted_work_done()

	TODO

	
read_buffer(buffer, buffer_offset=0, size=None)

	Takes the data contents of the buffer and return them as a memoryview.

	Parameters

	
	buffer – The GPUBuffer object to read from.

	buffer_offset (int) – The offset in the buffer to start reading from.

	size – The number of bytes to read. Default all minus offset.

This copies the data in the given buffer to a temporary buffer
and then maps that buffer to read the data. The given buffer’s
usage must include COPY_SRC.

Also see GPUBuffer.map_read().

	
read_texture(source, data_layout, size)

	Reads the contents of the texture and return them as a memoryview.

	Parameters

	
	source – A dict with fields: “texture” (a texture object),
“origin” (a 3-tuple), “mip_level” (an int, default 0).

	data_layout – A dict with fields: “offset” (an int, default 0),
“bytes_per_row” (an int), “rows_per_image” (an int, default 0).

	size – A 3-tuple of ints specifying the size to write.

Unlike GPUCommandEncoder.copyBufferToTexture(), there is
no alignment requirement on bytes_per_row, although in the
current implementation there will be a performance penalty if
bytes_per_row is not a multiple of 256 (because we’ll be
copying data row-by-row in Python).

	
submit(command_buffers)

	Submit a GPUCommandBuffer to the queue.

	Parameters

	command_buffers (list) – The GPUCommandBuffer objects to add.

	
write_buffer(buffer, buffer_offset, data, data_offset=0, size=None)

	Takes the data contents and schedules a write operation of
these contents to the buffer. A snapshot of the data is taken;
any changes to the data after this function is called do not
affect the buffer contents.

	Parameters

	
	buffer – The GPUBuffer object to write to.

	buffer_offset (int) – The offset in the buffer to start writing at.

	data – The data to write. Must be contiguous.

	data_offset – The byte offset in the data. Default 0.

	size – The number of bytes to write. Default all minus offset.

This maps the data to a temporary buffer and then copies that buffer
to the given buffer. The given buffer’s usage must include COPY_DST.

Also see GPUDevice.create_buffer_with_data() and GPUBuffer.map_write().

	
write_texture(destination, data, data_layout, size)

	Takes the data contents and schedules a write operation of
these contents to the destination texture in the queue. A
snapshot of the data is taken; any changes to the data after
this function is called do not affect the texture contents.

	Parameters

	
	destination – A dict with fields: “texture” (a texture object),
“origin” (a 3-tuple), “mip_level” (an int, default 0).

	data – The data to write.

	data_layout – A dict with fields: “offset” (an int, default 0),
“bytes_per_row” (an int), “rows_per_image” (an int, default 0).

	size – A 3-tuple of ints specifying the size to write.

Unlike GPUCommandEncoder.copyBufferToTexture(), there is
no alignment requirement on bytes_per_row.

	
class wgpu.GPUQuerySet

	Subclass of GPUObjectBase

TODO

	
destroy()

	Destroy the queryset.

	
class wgpu.GPUDeviceLostInfo

	An object that contains information about the device being lost.

	
message

	The error message specifying the reason for the device being lost.

	
reason

	The reason (enums.GPUDeviceLostReason) for the device getting lost. Can be None.

	
class wgpu.GPUOutOfMemoryError

	Subclass of Exception, BaseException

An error raised when the GPU is out of memory.

	
class wgpu.GPUValidationError

	Subclass of Exception, BaseException

An error raised when the pipeline could not be validated.

	
message

	The error message specifying the reason for invalidation.

	
class wgpu.GPUCompilationInfo

	TODO

	
messages

	A list of GPUCompilationMessage objects.

	
class wgpu.GPUCompilationMessage

	An object that contains information about a problem with shader compilation.

	
length

	The length of the line?

	
line_num

	The corresponding line number in the shader source.

	
line_pos

	The position on the line in the shader source.

	
message

	The warning/error message.

	
offset

	Offset of …

	
type

	The type of warning/problem.

	
class wgpu.GPUUncapturedErrorEvent

	TODO

	
error

	The error object.

	
class wgpu.GPUExternalTexture

	Subclass of GPUObjectBase

Ignore this - specific to browsers.

	
expired

	Whether the external texture has been destroyed.

GUI API

You can use wgpu for compute tasks and to render offscreen. Rendering to
screen is also possible, but we need a canvas for that. Since the Python
ecosystem provides many different GUI toolkits, we need an interface.

For convenience, the wgpu library has builtin support for a few GUI
toolkits. At the moment these include GLFW, Jupyter, Qt, and wx.

The canvas interface

To render to a window, an object is needed that implements the few
functions on the canvas interface, and provide that object to
request_adapter().
This is the minimal interface required to hook wgpu-py to any GUI that supports GPU rendering.

	
class wgpu.gui.WgpuCanvasInterface(*args, **kwargs)

	This is the interface that a canvas object must implement in order
to be a valid canvas that wgpu can work with.

	
get_context(kind='gpupresent')

	Get the GPUCanvasContext object corresponding to this canvas,
which can be used to e.g. obtain a texture to render to.

	
get_display_id()

	Get the native display id on Linux. This is needed in addition to the
window id to obtain a surface id. The default implementation calls into
the X11 lib to get the display id.

	
get_physical_size()

	Get the physical size of the canvas in integer pixels.

	
get_window_id()

	Get the native window id. This is used to obtain a surface id,
so that wgpu can render to the region of the screen occupied by the canvas.

The WgpuCanvas base class

For each supported GUI toolkit there are specific
WgpuCanvas classes, which are detailed in the following sections.
These all derive from the same base class, which defines the common API.

	
class wgpu.gui.WgpuCanvasBase(*args, max_fps=30, **kwargs)

	An abstract class extending WgpuCanvasInterface,
that provides a base canvas for various GUI toolkits, so
that basic canvas functionality is available via a common API.

It is convenient - but not required - to use this class (or any of its
subclasses) to use wgpu-py.

	
close()

	Close the window.

	
draw_frame()

	The function that gets called at each draw. You can implement
this method in a subclass, or set it via a call to request_draw().

	
get_logical_size()

	Get the logical size in float pixels.

	
get_physical_size()

	Get the physical size in integer pixels.

	
get_pixel_ratio()

	Get the float ratio between logical and physical pixels.

	
is_closed()

	Get whether the window is closed.

	
request_draw(draw_function=None)

	Request from the main loop to schedule a new draw event,
so that the canvas will be updated. If draw_function is not
given, the last set drawing function is used.

	
set_logical_size(width, height)

	Set the window size (in logical pixels).

Base offscreen class

A base class is provided to implement off-screen canvases for different
purposes.

	
class wgpu.gui.WgpuOffscreenCanvas(*args, **kwargs)

	Base class for off-screen canvases, providing a custom presentation
context that renders to a tetxure instead of a surface/screen.
The resulting texture view is passed to the present() method.

	
get_context(kind='gpupresent')

	Get the GPUCanvasContext object to obtain a texture to render to.

	
get_preferred_format()

	Get the preferred format for this canvas. This method can
be overloaded to control the used texture format. The default
is “rgba8unorm” (not including srgb colormapping).

	
get_window_id()

	This canvas does not correspond to an on-screen window.

	
present(texture_view)

	Method that gets called at the end of each draw event. Subclasses
should provide the approproate implementation.

The auto GUI backend

The default approach for examples and small applications is to use
the automatically selected GUI backend.

from wgpu.gui.auto import WgpuCanvas, run, call_later

canvas = WgpuCanvas(title="Example")
canvas.request_draw(your_draw_function)

run()

At the moment this selects either the GLFW, Qt, or Jupyter backend, depending
on the enviornment. The WgpuCanvas has a handle_event() method
that can be overloaded (by subclassing WgpuCanvas) to process user events.
See the event spec [https://jupyter-rfb.readthedocs.io/en/latest/events.html].

Gui backends that support the auto-gui mechanics, implement WgpuAutoGui.

	
class wgpu.gui.WgpuAutoGui(*args, **kwargs)

	Mixin class for canvases implementing autogui.

	
add_event_handler(*args)

	Register an event handler.

	Parameters

	
	callback (callable) – The event handler. Must accept a
single event argument.

	*types (list of strings) – A list of event types.

For the available events, see
https://jupyter-rfb.readthedocs.io/en/latest/events.html

Can also be used as a decorator.

Example:

def my_handler(event):
 print(event)

canvas.add_event_handler(my_handler, "pointer_up", "pointer_down")

Decorator usage example:

@canvas.add_event_handler("pointer_up", "pointer_down")
def my_handler(event):
 print(event)

	
handle_event(event)

	Handle an incoming event.

Subclasses can overload this method. Events include widget
resize, mouse/touch interaction, key events, and more. An event
is a dict with at least the key event_type. For details, see
https://jupyter-rfb.readthedocs.io/en/latest/events.html

	
remove_event_handler(callback, *types)

	Unregister an event handler.

	Parameters

	
	callback (callable) – The event handler.

	*types (list of strings) – A list of event types.

Support for Qt

There is support for PyQt5, PyQt6, PySide2 and PySide6. The wgpu library detects what
library you are using by looking what module has been imported.

Import any of the Qt libraries before importing the WgpuCanvas.
This way wgpu knows which Qt library to use.
from PySide6 import QtWidgets
from wgpu.gui.qt import WgpuCanvas

app = QtWidgets.QApplication([])

Instantiate the canvas
canvas = WgpuCanvas(title="Example")

Tell the canvas what drawing function to call
canvas.request_draw(your_draw_function)

app.exec_()

For a toplevel widget, the WgpuCanvas class can be imported. If you want to
embed the canvas as a subwidget, use WgpuWidget instead.

Also see the Qt triangle example [https://github.com/pygfx/wgpu-py/blob/main/examples/triangle_qt.py]
and Qt triangle embed example [https://github.com/pygfx/wgpu-py/blob/main/examples/triangle_qt_embed.py].

Support for wx

There is support for embedding a wgpu visualization in wxPython.

import wx
from wgpu.gui.wx import WgpuCanvas

app = wx.App()

Instantiate the canvas
canvas = WgpuCanvas(title="Example")

Tell the canvas what drawing function to call
canvas.request_draw(your_draw_function)

app.MainLoop()

For a toplevel widget, the WgpuCanvas class can be imported. If you want to
embed the canvas as a subwidget, use WgpuWidget instead.

Also see the wx triangle example [https://github.com/pygfx/wgpu-py/blob/main/examples/triangle_wx.py]
and wx triangle embed example [https://github.com/pygfx/wgpu-py/blob/main/examples/triangle_wx_embed.py].

Support for offscreen

You can also use a “fake” canvas to draw offscreen and get the result as a numpy array.
Note that you can render to a texture without using any canvas
object, but in some cases it’s convenient to do so with a canvas-like API.

from wgpu.gui.offscreen import WgpuCanvas

Instantiate the canvas
canvas = WgpuCanvas(640, 480)

...

Tell the canvas what drawing function to call
canvas.request_draw(your_draw_function)

Perform a draw
array = canvas.draw()

Support for GLFW

GLFW is a lightweight windowing toolkit. Install it with pip install glfw.
The preferred approach is to use the auto backend, but you can replace from wgpu.gui.auto
with from wgpu.gui.glfw to force using GLFW.

To implement interaction, create a subclass and overload the handle_event()
method (and call super().handle_event(event)).
See the event spec [https://jupyter-rfb.readthedocs.io/en/latest/events.html].

Support for Jupyter lab and notebook

WGPU can be used in Jupyter lab and the Jupyter notebook. This canvas
is based on jupyter_rfb [https://github.com/vispy/jupyter_rfb] an ipywidget
subclass implementing a remote frame-buffer. There are also some wgpu examples [https://jupyter-rfb.readthedocs.io/en/latest/examples/].

To implement interaction, create a subclass and overload the handle_event()
method (and call super().handle_event(event)).
See the event spec [https://jupyter-rfb.readthedocs.io/en/latest/events.html].

from wgpu.gui.jupyter import WgpuCanvas # Direct approach
from wgpu.gui.auto import WgpuCanvas # Approach compatible with desktop usage

canvas = WgpuCanvas()

... wgpu code

canvas # Use as cell output

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 wgpu	

 	
 	
 wgpu.enums	

 	
 	
 wgpu.flags	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	adapter (wgpu.GPUDevice attribute)

 	add_event_handler() (wgpu.gui.WgpuAutoGui method)

 	
 	AddressMode (in module wgpu.enums)

 	apidiff (in module wgpu.base)

B

 	
 	begin_compute_pass() (wgpu.GPUCommandEncoder method)

 	begin_occlusion_query() (wgpu.GPURenderPassEncoder method)

 	begin_render_pass() (wgpu.GPUCommandEncoder method)

 	
 	BlendFactor (in module wgpu.enums)

 	BlendOperation (in module wgpu.enums)

 	BufferBindingType (in module wgpu.enums)

 	BufferUsage (in module wgpu.flags)

C

 	
 	canvas (wgpu.GPUCanvasContext attribute)

 	CanvasCompositingAlphaMode (in module wgpu.enums)

 	clear_buffer() (wgpu.GPUCommandEncoder method)

 	close() (wgpu.gui.WgpuCanvasBase method)

 	ColorWrite (in module wgpu.flags)

 	CompareFunction (in module wgpu.enums)

 	compilation_info() (wgpu.GPUShaderModule method)

 	compilation_info_async() (wgpu.GPUShaderModule method)

 	CompilationMessageType (in module wgpu.enums)

 	compute_with_buffers() (in module wgpu.utils)

 	ComputePassTimestampLocation (in module wgpu.enums)

 	configure() (wgpu.GPUCanvasContext method)

 	copy_buffer_to_buffer() (wgpu.GPUCommandEncoder method)

 	copy_buffer_to_texture() (wgpu.GPUCommandEncoder method)

 	copy_texture_to_buffer() (wgpu.GPUCommandEncoder method)

 	copy_texture_to_texture() (wgpu.GPUCommandEncoder method)

 	
 	create_bind_group() (wgpu.GPUDevice method)

 	create_bind_group_layout() (wgpu.GPUDevice method)

 	create_buffer() (wgpu.GPUDevice method)

 	create_buffer_with_data() (wgpu.GPUDevice method)

 	create_command_encoder() (wgpu.GPUDevice method)

 	create_compute_pipeline() (wgpu.GPUDevice method)

 	create_compute_pipeline_async() (wgpu.GPUDevice method)

 	create_pipeline_layout() (wgpu.GPUDevice method)

 	create_query_set() (wgpu.GPUDevice method)

 	create_render_bundle_encoder() (wgpu.GPUDevice method)

 	create_render_pipeline() (wgpu.GPUDevice method)

 	create_render_pipeline_async() (wgpu.GPUDevice method)

 	create_sampler() (wgpu.GPUDevice method)

 	create_shader_module() (wgpu.GPUDevice method)

 	create_texture() (wgpu.GPUDevice method)

 	create_view() (wgpu.GPUTexture method)

 	CullMode (in module wgpu.enums)

D

 	
 	destroy() (wgpu.GPUBuffer method)

 	(wgpu.GPUDevice method)

 	(wgpu.GPUQuerySet method)

 	(wgpu.GPUTexture method)

 	DeviceLostReason (in module wgpu.enums)

 	dimension (wgpu.GPUTexture attribute)

 	
 	dispatch_workgroups() (wgpu.GPUComputePassEncoder method)

 	dispatch_workgroups_indirect() (wgpu.GPUComputePassEncoder method)

 	draw() (wgpu.GPURenderCommandsMixin method)

 	draw_frame() (wgpu.gui.WgpuCanvasBase method)

 	draw_indexed() (wgpu.GPURenderCommandsMixin method)

 	draw_indexed_indirect() (wgpu.GPURenderCommandsMixin method)

 	draw_indirect() (wgpu.GPURenderCommandsMixin method)

E

 	
 	end() (wgpu.GPUComputePassEncoder method)

 	(wgpu.GPURenderPassEncoder method)

 	end_occlusion_query() (wgpu.GPURenderPassEncoder method)

 	Enum (class in wgpu.enums)

 	
 	error (wgpu.GPUUncapturedErrorEvent attribute)

 	ErrorFilter (in module wgpu.enums)

 	execute_bundles() (wgpu.GPURenderPassEncoder method)

 	expired (wgpu.GPUExternalTexture attribute)

F

 	
 	FeatureName (in module wgpu.enums)

 	features (wgpu.GPUAdapter attribute)

 	(wgpu.GPUDevice attribute)

 	FilterMode (in module wgpu.enums)

 	
 	finish() (wgpu.GPUCommandEncoder method)

 	(wgpu.GPURenderBundleEncoder method)

 	Flags (class in wgpu.flags)

 	format (wgpu.GPUTexture attribute)

 	FrontFace (in module wgpu.enums)

G

 	
 	get_bind_group_layout() (wgpu.GPUPipelineBase method)

 	get_context() (wgpu.gui.WgpuCanvasInterface method)

 	(wgpu.gui.WgpuOffscreenCanvas method)

 	get_current_texture() (wgpu.GPUCanvasContext method)

 	get_default_device() (in module wgpu.utils)

 	get_display_id() (wgpu.gui.WgpuCanvasInterface method)

 	get_logical_size() (wgpu.gui.WgpuCanvasBase method)

 	get_physical_size() (wgpu.gui.WgpuCanvasBase method)

 	(wgpu.gui.WgpuCanvasInterface method)

 	get_pixel_ratio() (wgpu.gui.WgpuCanvasBase method)

 	get_preferred_format() (wgpu.GPUCanvasContext method)

 	(wgpu.gui.WgpuOffscreenCanvas method)

 	get_window_id() (wgpu.gui.WgpuCanvasInterface method)

 	(wgpu.gui.WgpuOffscreenCanvas method)

 	GPU (class in wgpu)

 	GPUAdapter (class in wgpu)

 	GPUBindGroup (class in wgpu)

 	GPUBindGroupLayout (class in wgpu)

 	GPUBindingCommandsMixin (class in wgpu)

 	GPUBuffer (class in wgpu)

 	GPUCanvasContext (class in wgpu)

 	GPUCommandBuffer (class in wgpu)

 	GPUCommandEncoder (class in wgpu)

 	GPUCommandsMixin (class in wgpu)

 	
 	GPUCompilationInfo (class in wgpu)

 	GPUCompilationMessage (class in wgpu)

 	GPUComputePassEncoder (class in wgpu)

 	GPUComputePipeline (class in wgpu)

 	GPUDebugCommandsMixin (class in wgpu)

 	GPUDevice (class in wgpu)

 	GPUDeviceLostInfo (class in wgpu)

 	GPUExternalTexture (class in wgpu)

 	GPUObjectBase (class in wgpu)

 	GPUOutOfMemoryError (class in wgpu)

 	GPUPipelineBase (class in wgpu)

 	GPUPipelineLayout (class in wgpu)

 	GPUQuerySet (class in wgpu)

 	GPUQueue (class in wgpu)

 	GPURenderBundle (class in wgpu)

 	GPURenderBundleEncoder (class in wgpu)

 	GPURenderCommandsMixin (class in wgpu)

 	GPURenderPassEncoder (class in wgpu)

 	GPURenderPipeline (class in wgpu)

 	GPUSampler (class in wgpu)

 	GPUShaderModule (class in wgpu)

 	GPUTexture (class in wgpu)

 	GPUTextureView (class in wgpu)

 	GPUUncapturedErrorEvent (class in wgpu)

 	GPUValidationError (class in wgpu)

H

 	
 	handle_event() (wgpu.gui.WgpuAutoGui method)

I

 	
 	IndexFormat (in module wgpu.enums)

 	insert_debug_marker() (wgpu.GPUDebugCommandsMixin method)

 	
 	is_closed() (wgpu.gui.WgpuCanvasBase method)

 	is_fallback_adapter (wgpu.GPUAdapter attribute)

L

 	
 	label (wgpu.GPUObjectBase attribute)

 	length (wgpu.GPUCompilationMessage attribute)

 	limits (wgpu.GPUAdapter attribute)

 	(wgpu.GPUDevice attribute)

 	
 	line_num (wgpu.GPUCompilationMessage attribute)

 	line_pos (wgpu.GPUCompilationMessage attribute)

 	LoadOp (in module wgpu.enums)

 	lost (wgpu.GPUDevice attribute)

M

 	
 	map_read() (wgpu.GPUBuffer method)

 	map_write() (wgpu.GPUBuffer method)

 	MapMode (in module wgpu.flags)

 	message (wgpu.GPUCompilationMessage attribute)

 	(wgpu.GPUDeviceLostInfo attribute)

 	(wgpu.GPUValidationError attribute)

 	
 	messages (wgpu.GPUCompilationInfo attribute)

 	mip_level_count (wgpu.GPUTexture attribute)

 	MipmapFilterMode (in module wgpu.enums)

N

 	
 	name (wgpu.GPUAdapter attribute)

O

 	
 	offset (wgpu.GPUCompilationMessage attribute)

 	
 	on_submitted_work_done() (wgpu.GPUQueue method)

 	onuncapturederror (wgpu.GPUDevice attribute)

P

 	
 	pop_debug_group() (wgpu.GPUDebugCommandsMixin method)

 	PowerPreference (in module wgpu.enums)

 	PredefinedColorSpace (in module wgpu.enums)

 	present() (wgpu.GPUCanvasContext method)

 	(wgpu.gui.WgpuOffscreenCanvas method)

 	
 	PrimitiveTopology (in module wgpu.enums)

 	properties (wgpu.GPUAdapter attribute)

 	push_debug_group() (wgpu.GPUDebugCommandsMixin method)

Q

 	
 	QueryType (in module wgpu.enums)

 	
 	queue (wgpu.GPUDevice attribute)

R

 	
 	read_buffer() (wgpu.GPUQueue method)

 	read_texture() (wgpu.GPUQueue method)

 	reason (wgpu.GPUDeviceLostInfo attribute)

 	remove_event_handler() (wgpu.gui.WgpuAutoGui method)

 	RenderPassTimestampLocation (in module wgpu.enums)

 	
 	request_adapter() (in module wgpu)

 	request_adapter_async() (in module wgpu)

 	request_device() (wgpu.GPUAdapter method)

 	request_device_async() (wgpu.GPUAdapter method)

 	request_draw() (wgpu.gui.WgpuCanvasBase method)

 	resolve_query_set() (wgpu.GPUCommandEncoder method)

S

 	
 	sample_count (wgpu.GPUTexture attribute)

 	SamplerBindingType (in module wgpu.enums)

 	set_bind_group() (wgpu.GPUBindingCommandsMixin method)

 	set_blend_constant() (wgpu.GPURenderPassEncoder method)

 	set_index_buffer() (wgpu.GPURenderCommandsMixin method)

 	set_logical_size() (wgpu.gui.WgpuCanvasBase method)

 	set_pipeline() (wgpu.GPUComputePassEncoder method)

 	(wgpu.GPURenderCommandsMixin method)

 	set_scissor_rect() (wgpu.GPURenderPassEncoder method)

 	set_stencil_reference() (wgpu.GPURenderPassEncoder method)

 	
 	set_vertex_buffer() (wgpu.GPURenderCommandsMixin method)

 	set_viewport() (wgpu.GPURenderPassEncoder method)

 	ShaderStage (in module wgpu.flags)

 	size (wgpu.GPUBuffer attribute)

 	(wgpu.GPUTexture attribute)

 	(wgpu.GPUTextureView attribute)

 	StencilOperation (in module wgpu.enums)

 	StorageTextureAccess (in module wgpu.enums)

 	StoreOp (in module wgpu.enums)

 	submit() (wgpu.GPUQueue method)

T

 	
 	texture (wgpu.GPUTextureView attribute)

 	TextureAspect (in module wgpu.enums)

 	TextureDimension (in module wgpu.enums)

 	TextureFormat (in module wgpu.enums)

 	
 	TextureSampleType (in module wgpu.enums)

 	TextureUsage (in module wgpu.flags)

 	TextureViewDimension (in module wgpu.enums)

 	type (wgpu.GPUCompilationMessage attribute)

U

 	
 	unconfigure() (wgpu.GPUCanvasContext method)

 	
 	usage (wgpu.GPUBuffer attribute)

 	(wgpu.GPUTexture attribute)

V

 	
 	VertexFormat (in module wgpu.enums)

 	
 	VertexStepMode (in module wgpu.enums)

W

 	
 	wgpu (module)

 	wgpu.enums (module)

 	wgpu.flags (module)

 	WgpuAutoGui (class in wgpu.gui)

 	WgpuCanvasBase (class in wgpu.gui)

 	
 	WgpuCanvasInterface (class in wgpu.gui)

 	WgpuOffscreenCanvas (class in wgpu.gui)

 	write_buffer() (wgpu.GPUQueue method)

 	write_texture() (wgpu.GPUQueue method)

 	write_timestamp() (wgpu.GPUCommandEncoder method)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to the wgpu-py docs!

 		
 Getting started

 		
 Installation

 		
 Dependencies

 		
 System requirements

 		
 About this API

 		
 What’s new in this version?

 		
 Guide

 		
 A brief history of WebGPU

 		
 Getting started with WebGPU

 		
 Coordinate system

 		
 Communicating array data

 		
 Debugging

 		
 Freezing apps with wgpu

 		
 Examples

 		
 Reference

 		
 Utilities

 		
 Enums

 		
 Flags

 		
 WGPU API

 		
 How to read this API

 		
 Selecting the backend

 		
 Differences from WebGPU

 		
 Alphabetic list of GPU classes

 		
 Overview

 		
 WGPU classes

 		
 Adapter and device

 		
 Buffers and textures

 		
 Bind groups

 		
 Shaders and pipelines

 		
 Command buffers and encoders

 		
 Other

 		
 GUI API

 		
 The canvas interface

 		
 The WgpuCanvas base class

 		
 Base offscreen class

 		
 The auto GUI backend

 		
 Support for Qt

 		
 Support for wx

 		
 Support for offscreen

 		
 Support for GLFW

 		
 Support for Jupyter lab and notebook

_static/minus.png

_static/plus.png

_static/up-pressed.png

_static/up.png

